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Efficient method for simulating quantum electron dynamics under the time-dependent
Kohn-Sham equation

Naoki Watanabe and Masaru Tsukada
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A numerical scheme for solving the time evolution of wave functions under the time-dependent Kohn-Sham
~TDKS! equation has been developed. Since the effective Hamiltonian depends on the wave functions, the
wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a
self-consistent loop is required at every time step for solving the time evolution numerically, which is com-
putationally expensive. However, in this paper, we develop a different approach, expressing a formal solution
of the TDKS equation, and prove that it is possible to solve the TDKS equation efficiently and accurately by
means of a simple numerical scheme without the use of any self-consistent loops.
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I. INTRODUCTION

Since the innovative work on the density function
theory ~DFT! @1# and the Kohn-Sham equation@2#, many
kinds of static or adiabatic quantum electronic phenom
have been investigated based on first principles. As an ex
sion of the DFT to nonadiabatic dynamical phenomena,
time-dependent density functional theory~TDDFT! has been
developed@3,4#. By using the TDDFT, some excitation phe
nomena have been analyzed more accurately than by u
the DFT@5#. However, the formulation of the TDDFT is to
complicated to solve the wave functions numerically in ord
to see electron dynamics directly. So a considerable appr
mation called the TD Kohn-Sham~TDKS! equation has been
applied for numerical simulations@6,7#.

The difficulty in numerically solving the TDKS equatio
is the treatment of the density-dependent Hamiltonian. T
wave functions and the Hamiltonian should always be s
consistent with each other. A fourth order self-consistent fi
~SCF! iterative scheme was proposed by Sugino and Mi
moto @6#. However, the use of a SCF loop at every time s
is computationally expensive.

In this paper, we propose a different formalism for t
numerical solution of the TDKS equation. Based on it,
prove that a simple formula without SCF loops can solve
TDKS equation with sufficient accuracy. We find that com
putational techniques@9,10# previously developed by us fo
the one-electron TD Schro¨dinger equation in real space an
real time are also useful for the TDKS equation.

II. CONVENTIONAL METHOD

The TDKS equation is a mean field approach used
describing the time evolution of the electron densityr via
one-electron wave functionscn under an effective Hamil-
tonianH,

i
]cn~ t !

]t
5H@r,t#cn~ t !, H@r,t#52

n

2
1V@r,t#, ~1!

V@r,t#5Vint@r#1Vext~ t !, r~ t !5 (
n51

N

ucn~ t !u2.
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Here, V@r,t# is an effective potential which represents t
internal mutual interactionsVint@r# and the external time-
dependent potentialVext(t). Throughout this paper, we us
atomic units\51, m51, ande51 for equations and val-
ues.

Because of the time dependence of the Hamiltonian,
solution of the TDKS equation can be formally expressed
terms of a time-ordering exponential operator:

cn~ t !5T expF2 i E
0

t

dt8H@r,t8#Gcn~0!. ~2!

There are many numerical methods for computing Eq.~2!.
The simplest method discretizes the elapsed timet into small
time slicesDt, and approximates Eq.~2! as

cn~ t1Dt !'exp~2 iDtH@r,t# !cn~ t !, ~3!

and it is computed using the Runge-Kutta method, or by
split operator technique:

cn~ t1Dt !;expF iDt

2

n

2 GexpFDt

i
V@r,t#GexpF iDt

2

n

2 Gcn~ t !.

~4!

However, this is not sufficiently accurate, because it igno
the time dependence of the Hamiltonian during the sm
time slice, while the splitting reduces accuracy to an ev
lower level.

Another well-known computational method for Eq.~2!
uses a Hamiltonian in the middle of the steps,

cn~ t1Dt !.expS 2 iDtHFr,t1
Dt

2 G Dcn~ t !. ~5!

Equation ~5! is also computed by the split operator tec
nique:

cn~ t1Dt !;expF iDt

2

n

2 GexpS Dt

i
VFr,t1

Dt

2 G D
3expF iDt

2

n

2 Gcn~ t !. ~6!
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Here, V@r,t1Dt/2# is estimated from an interpolation be
tween V@r,t# and V@r,t1Dt#. Therefore, they have to b
solved by a SCF loop. This scheme is accurate enough; h
ever, it is computationally expensive to perform the S
loop at every time step.

III. FORMULATION

To avoid the use of a SCF loop, we first express the ti
evolution of the wave functions using a Taylor developm
in exponential form as

cn~ t1Dt !5 (
k50

`
Dtk

k!

]k

]tk
cn~ t !5expFDt

]

]t Gcn~ t !. ~7!

We consider a quantityf ($c%,$c* %,t) which depends on
the wave functionsc and timet explicitly. The time deriva-
tive of this quantity is expanded by the chain rule,

] f

]t
5

]c

]t

d f

dc
1

]c*

]t

d f

dc*
1

] f

]tex
. ~8!

Here, we have used the following notation:

]c

]t

d f

dc
[ (

m51

N E dr
]cm~r !

]t

] f

]cm~r !
, ~9!

and ]/]tex means an explicite time-derivative operato
which operates on only explicitly time-dependent quantiti

By substituting the TDKS equation~1! into Eq. ~8!, the
time differential is generally expressed as

i
]

]t
5~H@r,t#c!

d

dc
2~H@r,t#c!*

d

dc*
1 i

]

]tex
. ~10!

For example, it operates on a wave functioncn as

i
]cn

]t
5~H@r,t#c!

dcn

dc
2~H@r,t#c!*

dcn

dc*
1 i

]cn

]tex

5H@r,t#cn , ~11!

becausecn does not depend oncm* and t explicitly.
Another example concerns the densityr:

i
]r

]t
5~H@r,t#c!

dr

dc
2~H@r,t#c!*

dr

dc*
1 i

]r

]tex

5(
m

~H@r,t#cm!cm* 2~H@r,t#cm!* cm , ~12!

becauser also does not depend ont explicitly.
By substituting Eq.~10! into Eq. ~7!, we can formally

write the solution without employing the time-ordering o
erator as
03670
w-
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t
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cn~ t1Dt !5exp
Dt

i F ~H@r,t#c!
d

dc
2~H@r,t#c!*

d

dc*

1 i
]

]tex
Gcn~ t !. ~13!

However, this does not describe the algorithm for compu
tions. To show the method of computation of Eq.~13!, we
decompose the exponential operator as

cn~ t1Dt !.expFDt

2

]

]tex
G

3exp
iDt

4 F ~nc!
d

dc
2~nc!*

d

dc*
G

3exp
Dt

i F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
G

3exp
iDt

4 F ~nc!
d

dc
2~nc!*

d

dc*
G

3expFDt

2

]

]tex
Gcn~ t !. ~14!

Equation~14! is correct up to the second order ofDt.
To clarify the meaning of the exponential operator th

contains the Laplacian appearing in Eq.~14!, we expand it in
a Taylor development as

exp
iDt

4 F ~nc!
d

dc
2~nc!*

d

dc*
Gcn

5 (
k50

`
~ iDt !k

k!4k F ~nc!
d

dc
2~nc!*

d

dc*
G k

cn . ~15!

The first term (k51) of the series operates oncn as

F ~nc!
d

dc
2~nc!*

d

dc*
Gcn5ncn . ~16!

The second term (k52) operates as

F ~nc!
d

dc
2~nc!*

d

dc*
G 2

cn

5F ~nc!
d

dc
2~nc!*

d

dc*
Gncn

5~nc!
dncn

dc

5n
dcn

dc
~nc!5nncn . ~17!

Generally,
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F ~nc!
d

dc
2~nc!*

d

dc*
G k

cn5nkcn . ~18!

Thus, we obtain the following identity:

exp
iDt

4 F ~nc!
d

dc
2~nc!*

d

dc*
Gcn5expF iDt

4
nGcn .

~19!

Similarly, we expand the exponential operator that co
tains the effective potential appearing in Eq.~14! as

exp
Dt

i F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
Gcn

5 (
k50

`
~Dt !k

k! i k F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
G k

cn .

~20!

The first term (k51) of the series operatescn as

F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
Gcn5V@r,t#cn .

~21!

The second term (k52) operates as

F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
GV@r,t#cn

5V@r,t#V@r,t#cn1S ~V@r,t#c!
dV@r,t#

dc Dcn

2S ~V@r,t#c!*
dV@r,t#

dc*
D cn

5V@r,t#V@r,t#cn1S ~V@r,t#c!c*
dV@r,t#

dr Dcn

2S ~V@r,t#c!* c
dV@r,t#

dr Dcn

5V@r,t#V@r,t#cn . ~22!

Thus, we obtain the following identity:

exp
Dt

i F ~V@r,t#c!
d

dc
2~V@r,t#c!*

d

dc*
Gcn

5expFDt

i
V@r,t#Gcn . ~23!

Substituting Eqs.~19! and ~23! into Eq. ~14!, we obtain
03670
-

cn~ t1Dt !.expFDt

2

]

]tex
GexpF iDt

2

n

2 GexpFDt

i
V@r,t#G

3expF iDt

2

n

2 GexpFDt

2

]

]tex
Gcn~ t !. ~24!

By the way,Vint@r# does not depend on time explicitly
because the densityr does not depend on time explicitly a
shown in Eq.~12!. Meanwhile,Vext(t) does depend on time
explicitly,

]Vint@r#

]tex
50,

]Vext~ t !

]tex
5” 0. ~25!

Therefore, the exponential of the explicit time-derivative o
erator appearing in Eq.~24! affects only the external time
dependent potentialVext(t) as

expFDt

2

]

]tex
GVext~ t !5VextS t1

Dt

2 D . ~26!

As a result, we obtain the desired formula:

cn~ t1Dt !.expF iDt

2

n

2 GexpH Dt

i FVint@r8#

1VextS t1
Dt

2 D G J expF iDt

2

n

2 Gcn~ t !. ~27!

Here,Vext(t1Dt/2) is the external force in the middle of th
steps. Meanwhile,r8 in Vint@r8# is not the density in the
middle of the steps, but the density after the preceding
eration, namely,

r8~r !5 (
n51

N UexpF iDt

2

n

2 Gcn~r ,t !U2

. ~28!

Therefore, the formula~27! can be explicitly computed with-
out employing any SCF loops.

The present non-self-consistent-field~non-SCF! formula
~27! is quite similar to the conventional non-SCF formula~4!
and the conventional SCF formula~6!. However, in this pa-
per, we have derived the formula based on the strict solu
~13! by considering the time dependence of the Hamiltoni
while the conventional non-SCF formula did not consider
time dependence. We can easily show that the present
SCF formula is as accurate as the conventional SCF form
by associatingr8 with r(t1Dt) as

r85 (
n51

N

ucn~ t !u21 i
Dt

2 S cn*
n

2
cn2cn

n

2
cn* D

t

1O~Dt2!

5 (
n51

N

ucn~ t !u21
Dt

2 S cn*
]cn

]t
2cn

]cn*

]t D
t

1O~Dt2!

5r~ t !1
Dt

2

]r

]t U
t

1O~Dt2!5rS t1
Dt

2 D1O~Dt2!. ~29!
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Therefore, both the non-SCF formula and the SCF form
are correct up to the second order ofDt.

IV. COMPUTATIONAL TECHNIQUE

Computational techniques previously developed by us
the one-electron TD Schro¨dinger equation@9,10# are also
beneficial for formula~27!. We discretize the wave function
in real space, and use the finite element method for sp
derivatives. The only difference between the schemes for
TDKS equation and TD Schro¨dinger equation is the expo
nential of the effective potential:

cn8~r !5expFDt

i
Vint@r#Gcn~r !. ~30!

By this operation, the phase of the wave functions is alte
at each point, but the densityr(r ) is not altered. Therefore
we take the value ofVint@r#(r ) as a constant during the com
putation; it is calculated just before the computation.

It is quite easy to improve the accuracy of formula~27! to
the fourth order. The fourth order accurate formula is giv
by Suzuki’s exponential product theory@8# as

cn~ t1Dt !.S2„sDt;t1~12s!Dt…

3S2~sDt;t1~122s!Dt !

3S2~~124s!Dt;t12sDt !

3S2~sDt;t1sDt !S2~sDt;t !cn~ t !. ~31!

Here,s andS2(Dt;t) are given by

s51/~42A3 4!, ~32!

S2~Dt;t !5expF iDt

2

n

2 GexpFDt

i
V@r8,t#GexpF iDt

2

n

2 G ,
~33!

wherer8 is the density after the preceding operations.

V. EXAMPLE

In this section, we perform a simple simulation to veri
the efficiency and accuracy of the present method. T
model system we use here is a one-dimensional isolated
tem in which two electrons interact by ad-function interac-
tion under an oscillating electric field. The two-body wa
function C(x1 ,x2 ;t) in this system obeys the following TD
Schrödinger equation:

i
]

]t
C~x1 ,x2 ;t !5F2

1

2

]2

]x1
2

2
1

2

]2

]x2
2

1ad~x12x2!

1~x11x2!E0 sin~v0t !GC~x1 ,x2 ;t !,

~34!
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wherea is the coupling constant of the interaction, andE0 is
an external electric field to perturb this system.

We suppose thatC(x1 ,x2 ;t) is expressed by a commo
one-electron orbital wave functionc(x,t) as

C~x1 ,x2 ;t !5c~x1 ,t !c~x2 ,t !
1

A2
@x~↑,s1!x~↓,s2!

2x~↓,s1!x~↑,s2!#. ~35!

Thus, the TDKS equation is derived exactly:

i
]

]t
c~x,t !5F2

1

2

]2

]x2
1ar~x,t !1xE0 sin~v0t !Gc~x,t !,

r~x,t !5uc~x,t !u2. ~36!

We use the following parameters for computation:

Size of the system L58.0
Number of grid points Np564
Mutual interaction a50.5
External force E051/64
Frequency v051/8
Small time slice Dt51/16
Total time steps Nt525631024

First, we compute the lowest eigenstate of this syst
using the time-independent Kohn-Sham equation:

Ec0~x!5F2
1

2

]2

]x2
1ar~x!Gc0~x!. ~37!

FIG. 1. Spectrum of the scattered light. The sharp peak foun
0.125 a.u. corresponds to the Rayleigh scattering. The sharp
found at 0.261 a.u. corresponds to the emission from the first
cited state to the ground state; this energy includes many-body
nonlinear effects.
5-4
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We use this state as the initial state.
Second, we compute the time evolution using Eq.~27!.

Third, by Fourier transforming the time fluctuation of th
polarization, we obtain the spectrum of the scattered ligh
shown in Fig. 1.

The peak appearing at energyv050.125 ~a.u.! comes
from the injected light. The peak appearing at energyv
50.261 ~a.u.! is expected to be the excitation energy b
tween the first excited state and the ground state.

We have calculated the excitation energy by certain ot
methods: Method A solves the eigenstates by the non-TD
equation~37!, method B modifies the result of method A b
using the random-phase approximation~RPA!, and method C
diagonalizes the non-TD Schro¨dinger equation. The result
are listed below.

Excitation energies a.u. calculated by various methods.

~A! Non-TDKS equation vKS50.199
~B! Non-TDKS equation with RPA vRPA50.255
~C! Non-TD Schro¨dinger equation vSch50.260

TDKS equation v50.261

We found that the peak obtained by the present meth
i.e., the TDKS equation, reproduces fairly accurately the
citation energy calculated by means of the exact diagona
tion of the non-TD Schro¨dinger equation. That is, by solvin
the TDKS equation, dynamical phenomena can be descr
more accurately than by using the RPA as long as the ef
tive Hamiltonian is correct.

Next, to evaluate the error of the method, we estim
the error of theE density r(x,T) at a specified timeT
5256 a.u.

FIG. 2. Errors in the density obtained by three methods on so
small time slices. The conventional non-SCF method is accurat
to the first order ofDt, while the present non-SCF method and t
conventional SCF method are accurate up to the second order oDt.
In this test case, the error of the non-SCF method is almost the s
as that of the SCF method.
03670
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E5E
0

L

dxur~x,T!2rexact~x,T!u, ~38!

here the exact valuerexact(x,T) is prepared in advance b
performing the same simulation on an extremely small ti
slice Dt51/256 a.u.

Figure 2 shows the errors on some time slices obtained
three methods: the present non-SCF method~27!, the con-
ventional non-SCF method~4!, and the conventional SCF
method~6!.

All methods are accurate enough in this result. Howev
the conventional non-SCF method is stable only within
specific short time span, e.g.,T5512 a.u. for allDt in this
test. Meanwhile, the present non-SCF method and the c
ventional SCF method are stable even over a long time s
e.g., T564310242 a.u., Dt51/16 a.u., in this test. There
fore, these methods are suitable for long time span sim
tions.

We have also tested the simulation using the pres
fourth order non-SCF method~31! and the fourth order SCF
method proposed in the literature@6#. Figure 3 shows the
errors. Both errors are much less than those of the sec
order methods.

VI. CONCLUSION

We have proved that simulation of the wave function u
ing the TDKS equation can be performed by a simp
scheme and that there is no need for the use of SCF loop
maintain the self-consistency of the effective Hamiltonia
Our proposed non-SCF method is competitive in accur
with the SCF method, and also it is superior in computatio
efficiency. We are convinced that our method is helpful
investigating nonadiabatic and nonlinear quantum elect
dynamics.

e
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me

FIG. 3. Errors in the density obtained by the fourth order me
ods. Both errors are roughly proportional toDt4, and they are much
less than those of the second order methods. In this test case
error of the non-SCF method is almost the same as that of the
method.
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